
Ask Bjørn Hansen
Develooper LLC

Real World Web:
Performance &

Scalability

If this text is too small to read, move closer!
http://groups.google.com/group/scalable

April 14, 2008 – r17

http://develooper.com/talks/

http://develooper.com/talks/
http://groups.google.com/group/scalable
http://groups.google.com/group/scalable
http://develooper.com/talks/

° Actual number of minutes may vary

• I’m Ask Bjørn Hansen
perl.org, ~10 years of mod_perl
app development, mysql and scalability consulting
YellowBot

• I hate tutorials!

• Let’s do 3 hours of 5 minute° lightning talks!

Hello.

Construction Ahead!

• Conflicting advice ahead

• Not everything here is
applicable to everything

• Ways to “think scalable”
rather than be-all-end-all
solutions

• Don’t prematurely optimize!
(just don’t be too stupid with the “we’ll fix it later” stuff)

Questions ...
• How many ...

• ... are using PHP? Python? Python? Java? Ruby? C?

• 3.23? 4.0? 4.1? 5.0? 5.1? 6.x?

• MyISAM? InnoDB? Other?

• Are primarily “programmers” vs “DBAs”

• Replication? Cluster? Partitioning?

• Enterprise? Community?

• PostgreSQL? Oracle? SQL Server? Other?

Seen this talk before?

• No, you haven’t.

• :-)

• ~266 people * 3 hours
= half a work year!

0

50

100

150

200

2001 2004 2006 2007 2008

Slide count

Question Policy!
http://groups.google.com/group/scalable

• Do we have time for
questions?

• Yes! (probably)

• Quick questions anytime

• Long questions after

• or on the list!

• (answer to anything is likely “it
depends” or “let’s talk about it
after / send me an email”)

0.25

1.00

1.75

2001 2002 2004 2005 2006 2007 2008

Slides per minute

http://groups.google.com/group/scalable
http://groups.google.com/group/scalable

• The first, last and only lesson:

• Think Horizontal!
• Everything in your architecture, not just the front

end web servers

• Micro optimizations and other implementation
details –– Bzzzzt! Boring!

(blah blah blah, we’ll
get to the cool stuff

in a moment!)

Benchmarking techniques

• Scalability isn't the same as processing time

• Not “how fast” but “how many”

• Test “force”, not speed. Think amps, not voltage

• Test scalability, not just “performance”

• Use a realistic load
• Test with "slow clients"

• Testing “how fast” is ok when optimizing implementation
details (code snippets, sql queries, server settings)

Vertical scaling

• “Get a bigger server”

• “Use faster CPUs”

• Can only help so much (with bad
scale/$ value)

• A server twice as fast is more than
twice as expensive

• Super computers are horizontally
scaled!

Horizontal scaling

• “Just add another box” (or another thousand or ...)

• Good to great ...

• Implementation, scale your system a few times

• Architecture, scale dozens or hundreds of times

• Get the big picture
right first, do micro
optimizations later

Scalable
Application

Servers

Don’t paint yourself into a corner from the
start

Run Many of Them

• Avoid having The Server for
anything

• Everything should (be able to) run
on any number of boxes

• Don’t replace a server, add a
server

• Support boxes with different
capacities

Stateless vs Stateful

• “Shared Nothing”

• Don’t keep state within the application server
(or at least be Really Careful)

• Do you use PHP, mod_perl, mod_...

• Anything that’s more than one process

• You get that for free! (usually)

Sessions
“The key to be stateless”

or

“What goes where”

No Local Storage

• Ever! Not even as a quick hack.

• Storing session (or other state information)
“on the server” doesn’t work.

• “But my load balancer can do ‘sticky sessions’”

• Uneven scaling – waste of resources
(and unreliable, too!)

• The web isn’t “session based”, it’s one
short request after another – deal with it

Web/application server
with local

Session store

...
12345 => {
 user =>
 { username => 'joe',
 email => 'joe@example.com',
 id => 987,
 },
 shopping_cart => { ... },
 last_viewed_items => { ... },
 background_color => 'blue',
},
12346 => { ... },
....

Cookie: session_id=12345

Evil Session

What’s wrong
with this?

Web/application server
with local

Session store

...
12345 => {
 user =>
 { username => 'joe',
 email => 'joe@example.com',
 id => 987,
 },
 shopping_cart => { ... },
 last_viewed_items => { ... },
 background_color => 'blue',
},
12346 => { ... },
....

Cookie: session_id=12345

Evil Session

Easy to guess
cookie id

Saving state
on one server!

Duplicate data
from a DB table

What’s wrong
with this?

Big blob of junk!

Good Session!

Database(s)

Users
987 =>

 { username => 'joe',

 email => 'joe@example.com',

 },

...

Shopping Carts
...

Cookie: sid=seh568fzkj5k09z;

Web/application server

user=987-65abc;
bg_color=blue;

cart=...;

memcached cache

seh568fzkj5k09z =>

 { last_viewed_items => {...},

 ... other "junk" ...

 },

....

• Stateless
web server!

• Important data in
database

• Individual
expiration on
session objects

• Small data items
in cookies

Safe cookies

• Worried about manipulated cookies?

• Use checksums and timestamps to validate

• cookie=1/value/1123157440/ABCD1234

• cookie=$cookie_format_version
 /$value/$timestamp
 /$checksum

• function cookie_checksum {
 md5_hex($secret + $time + value);
}

Safe cookies

• Want fewer cookies? Combine them:

• cookie=1/user::987/cart::943/ts::1123.../EFGH9876

• cookie=$cookie_format_version
 /$key::$value[/$key::$value]
 /ts::$timestamp
 /$md5

• Encrypt cookies if you must (rarely worth the trouble

and CPU cycles)

I did everything – it’s still slow!

• Optimizations and good micro-practices are
necessary, of course

• But don’t confuse what is what!

• Know when you are optimizing

• Know when you need to step back and rethink “the
big picture”

Caching
 How to not do all that work again and again and again...

Cache hit-ratios

• Start with things you hit all the time

• Look at web server and database logs

• Don’t cache if you’ll need more effort writing to the
cache than you save

• Do cache if it’ll help you when that one single page
gets a million hits in a few hours (one out of two hundred

thousand pages on the digg frontpage)

• Measure! Don’t assume – check!

Generate Static Pages

• Ultimate Performance: Make all pages static

• Generate them from templates nightly or when
updated

• Doesn’t work well if you have millions of pages or
page variations

• Temporarily make a page static if the servers are
crumbling from one particular page being busy

• Generate your front page as a static file every N
minutes

Cache full pages
(or responses if it’s an API)

• Cache full output in the application

• Include cookies etc. in the “cache key”

• Fine tuned application level control

• The most flexible

• “use cache when this, not when that”
(anonymous users get cached page, registered users get a
generated page)

• Use regular expressions to insert customized
content into the cached page

Cache full pages 2
• Front end cache (Squid, Varnish, mod_cache) stores

generated content

• Set Expires/Cache-Control header to control cache
times

• or Rewrite rule to generate page if the cached file doesn’t
exist (this is what Rails does or did...) – only scales to one server

• RewriteCond %{REQUEST_FILENAME} !-s
RewriteCond %{REQUEST_FILENAME}/index.html !-s
RewriteRule (^/.*) /dynamic_handler/$1 [PT]

• Still doesn’t work for dynamic content per user (”6 items in
your cart”)

• Works for caching “dynamic” images ... on one server

Cache partial pages

• Pre-generate static page “snippets”
(this is what my.yahoo.com does or used to do...)

• Have the handler just assemble pieces ready to go

• Cache little page snippets (say the sidebar)

• Be careful, easy to spend more time managing the cache
snippets than you save!

• “Regexp” dynamic content into an otherwise cached page

Cache data

• Cache data that’s slow to query, fetch or calculate

• Generate page from the cached data

• Use the same data to generate API responses!

• Moves load to cache servers

• (For better or worse)

• Good for slow data used across many pages
(”todays bestsellers in $category”)

Caching Tools
Where to put the cache data ...

A couple of bad ideas
Don’t do this!

• Process memory ($cache{foo})

• Not shared!

• Shared memory? Local file system?

• Limited to one machine (likewise for a file system
cache)

• Some implementations are really fast

• MySQL query cache

• Flushed on each update

• Nice if it helps; don’t depend on it

MySQL cache table
• Write into one or more cache tables

• id is the “cache key”

• type is the “namespace”

• metadata for things like headers for cached http responses

• purge_key to make it easier to delete data from the cache

 CREATE TABLE `combust_cache` (
 `id` varchar(64) NOT NULL,
 `type` varchar(20) NOT NULL default '',
 `created` timestamp NOT NULL default
 CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP,
 `purge_key` varchar(16) default NULL,
 `data` mediumblob NOT NULL,
 `metadata` mediumblob,
 `serialized` tinyint(1) NOT NULL default '0',
 `expire` datetime NOT NULL default '0000-00-00 00:00:00',
 PRIMARY KEY (`id`,`type`),
 KEY `expire_idx` (`expire`),
 KEY `purge_idx` (`purge_key`)
) ENGINE=InnoDB

MySQL Cache Fails

• Scaling and availability issues

• How do you load balance?

• How do you deal with a cache box going away?

• Partition the cache to spread the write load

• Use Spread to write to the cache and distribute
configuration

• General theme: Don’t write directly to the DB

MySQL Cache Scales

• Persistence

• Most of the usual “scale the database” tricks apply

• Partitioning

• Master-Master replication for availability

• more on those things in a moment

• Put metadata in memcached for partitioning and fail-
over information

memcached

• LiveJournal’s distributed caching system
(used practically everywhere!)

• Memory based – memory is cheap!

• Linux 2.6 (epoll) or FreeBSD (kqueue)

• Low overhead for many many connections

• Run it on boxes with free memory

• ... or a dedicated cluster:
Facebook has more than five hundred dedicated
memcached servers (a lot of memory!)

more memcached

• No “master” – fully distributed

• Simple lightweight protocol (binary protocol coming)

• Scaling and high-availability is “built-in”

• Servers are dumb – clients calculate which server to
use based on the cache key

• Clients in perl, java, php, python, ruby, ...

• New C client library, libmemcached
http://tangent.org/552/libmemcached.html

http://tangent.org/552/libmemcached.html
http://tangent.org/552/libmemcached.html

How to use memcached

• It’s a cache, not a database

• Store data safely somewhere else

• Pass-through cache (id = session_id or whatever):

Read
 $data = memcached_fetch($id);
 return $data if $data
 $data = db_fetch($id);
 memcached_store($id, $data);
 return $data;

Write
 db_store($id, $data);
 memcached_store($id, $data);

Client Side Replication

• memcached is a cache - the data might “get lost”

• What if a cache miss is Really Expensive?

• Store all writes to several memcached servers

• Client libraries are starting to support this natively

Store complex data

• Most (all?) client libraries support complex data
structures

• A bit flag in memcached marks the data as
“serialized” (another bit for “gzip”)

• All this happens on the client side – memcached just
stores a bunch of bytes

• Future: Store data in JSON? Interoperability between
languages!

Store complex data 2

• Primary key lookups are probably not worth caching

• Store things that are expensive to figure out!

function get_slow_summary_data($id) {
 $data = memcached_fetch($id);
 return $data if $data
 $data = do_complicated_query($id);
 memcached_store($id, $data);
 return $data;
}

Cache invalidation

• Writing to the cache on updates is hard!

• Caching is a trade-off

• You trade “fresh” for “fast”

• Decide how “fresh” is required and deal with it!

• Explicit deletes if you can figure out what to delete

• Add a “generation” / timestamp / whatever to the
cache key

• select id, unix_timestamp(modified_on) as ts from
users where username = ‘ask’;

memcached_fetch(“user_friend_updates; $id; $ts”)

• Can’t live with it?

• Make the primary data-source
faster or data-store scale!

Caching is a trade-off

~$4,000,000
Vertical

Database scaling
How to avoid buying that gazillion dollar Sun box

~$3,200
(= 1230 for $4.0M!)

Be Simple
• Use MySQL!

• It’s fast and it’s easy to manage and tune

• Easy to setup development environments

• Other DBs can be faster at certain complex queries
but are harder to tune – and MySQL is catching up!

• Avoid making your schema too complicated

• Ignore some of the upcoming advice until
you REALLY need it!

• (even the part about not scaling your DB “up”)

• PostgreSQL is fast too :-)

Replication
More data more places!

Share the love load

Basic Replication

• Good Great for read intensive
applications

• Write to one master

• Read from many slaves

writes

master

slave slaveslave

writes

webservers

loadbalancer

reads

reads

Lots more details in
“High Performance MySQL”

old, but until MySQL 6 the replication concepts are the same

Relay slave
replication

• Running out of bandwidth on the master?

• Replicating to multiple data centers?

• A “replication slave” can be master to
other slaves

• Almost any possible replication scenario
can be setup (circular, star replication, ...)

writes

master

relay
slave A

relay
slave B

writes

webservers

loadbalancer

reads

slave slaveslave

slave slaveslave

data loading
script

writes

reads

Replication Scaling – Reads

• Reading scales well with replication

• Great for (mostly) read-only applications

reads

writes

reads

writes

Two servers

reads

writes

One server

ca
p
ac
it
y

(thanks to Brad Fitzpatrick!)

Replication Scaling – Writes
(aka when replication sucks)

• Writing doesn’t scale with replication

• All servers needs to do the same writes

ca
p
ac
it
y

reads

writes

reads

writes writes

reads

writes

reads

writes

reads

writes

reads

Partition the data
Divide and Conquer!

or

Web 2.0 Buzzword Compliant!

Now free with purchase of milk!!

Partition your data

• 96% read application? Skip this
step...

• Solution to the too many writes
problem: Don’t have all data on
all servers

• Use a separate cluster for
different data sets

master

slave

slave

slave

master

slave

slave

slave

Cat cluster Dog cluster

The Write Web!

• Replication too slow? Don’t have replication
slaves!

• Use a (fake) master-master setup and
partition / shard the data!

• Simple redundancy!

• No latency from commit to data being available

• Don’t bother with fancy 2 or 3 phase commits

• (Make each “main object” (user, product, ...)
always use the same master – as long as it’s
available)

cats

mastermaster

dogs

mastermaster

fish

mastermaster

Partition with a global master server

• Can’t divide data up in “dogs” and “cats”?

• Flexible partitioning!

• The “global” server keeps track of which cluster
has the data for user “623”

• Get all PKs from the global master

• Only auto_increment columns in the “global
master”

• Aggressively cache the “global master” data
(memcached)

• and/or use MySQL Cluster (ndb)

master

master

slave
(backup)

global master

webservers

user 623 is

in cluster 3

Where is

user 623?

select * from some_data

where user_id = 623

cluster 1

cluster 2

cluster 3

data clusters

Master – Master setup

• Setup two replicas of your database copying changes to
each-other

• Keep it simple! (all writes to one master)

• Instant fail-over host – no slave changes needed

• Configuration is easy!

• set-variable = auto_increment_increment=2
set-variable = auto_increment_offset=1

• (offset = 2 on second master)

• Setup both systems as a slave of the other

Online Schema Changes
The reasons we love master-master!

• Do big schema changes with no downtime!

• Stop A to B replication

• Move traffic to B

• Do changes on A

• Wait for A to catchup on replication

• Move traffic to A

• Re-start A to B replication

Hacks!
Don’t be afraid of the

data-duplication monster

http://flickr.com/photos/firevixen/75861588/

http://flickr.com/photos/firevixen/75861588/
http://flickr.com/photos/firevixen/75861588/

Summary tables!

• Find queries that do things with COUNT(*) and
GROUP BY and create tables with the results!

• Data loading process updates both tables

• or hourly/daily/... updates

• Variation: Duplicate data in a different “partition”

• Data affecting both a “user” and a “group” goes in
both the “user” and the “group” partition (Flickr does

this)

Summary databases!

• Don’t just create summary tables

• Use summary databases!

• Copy the data into special databases optimized for
special queries

• full text searches

• index with both cats and dogs

• anything spanning all clusters

• Different databases for different latency requirements
(RSS feeds from replicated slave DB)

Make everything repeatable

• Script failed in the middle of the nightly processing job?
(they will sooner or later, no matter what)

• How do you restart it?

• Build your “summary” and “load” scripts so they always
can be run again! (and again and again)

• One “authoritative” copy of a data piece – summaries
and copies are (re)created from there

Asynchronous data loading

• Updating counts? Loading logs?

• Don’t talk directly to the database, send updates through
Spread (or whatever) to a daemon loading data

• Don’t update for each request
update counts set count=count+1 where id=37

• Aggregate 1000 records or 2 minutes data and do fewer
database changes
update counts set count=count+42 where id=37

• Being disconnected from the DB will let the frontend keep
running if the DB is down!

“Manual” replication

• Save data to multiple “partitions”

• Application writes two places or

• last_updated/modified_on and deleted columns or

• Use triggers to add to “replication_queue” table

• Background program to copy data based on the
queue table or the last_updated column

• Build summary tables or databases in this process

• Build star/spoke replication system

Preload, -dump and -process

• Let the servers do as much as possible without touching the
database directly

• Data structures in memory – ultimate cache!

• Dump never changing data structures to JS files for the
client to cache

• Dump smaller read-only often accessed data sets to SQLite
or BerkeleyDB and rsync to each webserver (or use NFS,
but...)

• Or a MySQL replica on each webserver

Stored Procedures
Dangerous

• Not horizontal

• Bad:
Work done in the database server (unless it’s read-only and

replicated)

• Good:
Work done on one of the scalable web fronts

• Only do stored procedures if they save the database
work (network-io work > SP work)

a brief diversion ...

Running Oracle now?

• Move read operations to MySQL!

• Replicate from Oracle to a MySQL cluster
with “manual replication”

• Use triggers to keep track of changed rows
in Oracle

• Copy them to the MySQL master server
with a replication program

• Good way to “sneak” MySQL in ...

writes

master

slave slaveslave

writes

webservers

loadbalancer

reads

reads

Oracle
replication
program

writes

Optimize the
database

Faster, faster, faster

... very briefly

• The whole conference here is about this

• ... so I’ll just touch on a few ideas

Memory for MySQL = good

• Put as much memory you can afford in the server
(Currently 2GB sticks are the best value)

• InnoDB: Let MySQL use ~all memory (don’t use more
than is available, of course!)

• MyISAM: Leave more memory for OS page caches

• Can you afford to lose data on a crash? Optimize
accordingly

• Disk setup: We’ll talk about RAID later

What’s your app doing?

• Enable query logging in your development DB!

• Are all those queries really necessary? Cache
candidates?

• (you do have a devel db, right?)

• Just add “log=/var/lib/mysq/sql.log” to .cnf

• Slow query logging:
log-slow-queries
log-queries-not-using-indexes
long_query_time=1

• mysqldumpslow parses the slow log

• 5.1+ does not require a server restart and, can log
directly into a CSV table...

Table Choice

• Short version:
Use InnoDB, it’s harder to make them fall over

• Long version:
Use InnoDB except for

• Big read-only tables (smaller, less IO)

• High volume streaming tables (think logging)

• Locked tables / INSERT DELAYED

• ARCHIVE table engine

• Specialized engines for special needs

• More engines in the future

• For now: InnoDB

search cluster

(myisam,

fulltext

columns)

prod cluster

(innodb,

normalized

columns)

search_load process

Multiple MySQL instances

• Run different MySQL instances for different workloads

• Even when they share the same server anyway!

• InnoDB vs MyISAM instance

• Move to separate hardware and replication easier

• Optimize MySQL for the particular workload

• Very easy to setup with the instance manager or
mysqld_multi

• mysql.com init.d script supports the instance
manager (don’t use the redhat/fedora script!)

Config tuning helps
Query tuning works

• Configuration tuning helps a little

• The big performance improvements comes from
schema and query optimizations – focus on that!

• Design schema based on queries

• Think about what kind of operations will be common
on the data; don’t go for “perfect schema beauty”

• What results do you need? (now and in the future)

EXPLAIN

• Use the “EXPLAIN SELECT ...” command to check the query

• Baron Schwartz talks about this 2pm on Tuesday!

• Be sure to read
http://dev.mysql.com/doc/mysql/en/mysql-indexes.html
http://dev.mysql.com/doc/mysql/en/explain.html

http://dev.mysql.com/doc/mysql/en/explain.html
http://dev.mysql.com/doc/mysql/en/mysql-indexes.html
http://dev.mysql.com/doc/mysql/en/mysql-indexes.html
http://dev.mysql.com/doc/mysql/en/explain.html

Use smaller data

• Use Integers

• Always use integers for join keys

• And when possible for sorts, group bys,
comparisons

• Don’t use bigint when int will do

• Don’t use varchar(255) when varchar(20) will do

Store Large Binary Objects
(aka how to store images)

• Meta-data table (name, size, ...)

• Store images either in the file system

• meta data says “server ‘123’, filename ‘abc’”

• (If you want this; use mogilefs or Amazon S3 for storage!)

• OR store images in other tables

• Split data up so each table don’t get bigger than ~4GB

• Include “last modified date” in meta data

• Include it in your URLs if possible to optimize caching (/
images/$timestamp/$id.jpg)

Reconsider Persistent DB
Connections

• DB connection = thread = memory

• With partitioning all httpd processes talk to all DBs

• With lots of caching you might not need the main
database that often

• MySQL connections are fast

• Always use persistent connections with Oracle!

• Commercial connection pooling products

• pgsql, sybase, oracle? Need thousands of persistent
connections?

• In Perl the new DBD::Gofer can help with pooling!

InnoDB configuration

• innodb_file_per_table
Splits your innodb data into a file per table instead of one big
annoying file

• Makes optimize table `table` clear unused space

• innodb_buffer_pool_size=($MEM*0.80)

• innodb_flush_log_at_trx_commit setting

• innodb_log_file_size

• transaction-isolation = READ-COMMITTED

My favorite MySQL feature

• insert into t (somedate) values (“blah”);

• insert into t (someenum) values (“bad value”);

• Make MySQL picky about bad input!

• SET sql_mode = 'STRICT_TRANS_TABLES’;

• Make your application do this on connect

Don’t overwork the DB

• Databases don’t easily scale

• Don’t make the database do a ton of work

• Referential integrity is good

• Tons of stored procedures to validate and process
data not so much

• Don’t be too afraid of de-normalized data –
sometimes it’s worth the tradeoffs (call them summary tables

and the DBAs won’t notice)

Use your
resources wisely

don’t implode when things run warm

Work in parallel
• Split the work into smaller (but reasonable) pieces

and run them on different boxes

• Send the sub-requests off as soon as possible, do
something else and then retrieve the results

Job queues

• Processing time too long for the
user to wait?

• Can only process N requests /
jobs in parallel?

• Use queues (and external
worker processes)

• IFRAMEs and AJAX can make
this really spiffy (tell the user “the wait
time is 20 seconds”)

Job queue tools

• Database “queue”

• Dedicated queue table or just processed_on and
grabbed_on columns

• Webserver submits job

• First available “worker” picks it up and
returns the result to the queue

• Webserver polls for status

Queue

DB

webservers

workers
workers
workers
workers

More Job Queue tools

• beanstalkd - great protocol, fast, no persistence (yet)
http://xph.us/software/beanstalkd/

• gearman - for one off out-of-band jobs
http://www.danga.com/gearman/

• starling - from twitter, memcached protocol, disk based
persistence
http://rubyforge.org/projects/starling/

• TheSchwartz from SixApart, used in Movable Type

• Spread

• MQ / Java Messaging Service(?) / ...

http://www.danga.com/gearman/
http://www.danga.com/gearman/
http://www.danga.com/gearman/
http://www.danga.com/gearman/
http://www.danga.com/gearman/
http://www.danga.com/gearman/

Log http requests

• Log slow http transactions to a database
time, response_time, uri, remote_ip, user_agent, request_args, user,
svn_branch_revision, log_reason (a “SET” column), ...

• Log to ARCHIVE tables, rotate hourly / weekly / ...

• Log 2% of all requests!

• Log all 4xx and 5xx requests

• Great for statistical analysis!

• Which requests are slower

• Is the site getting faster or slower?

• Time::HiRes in Perl, microseconds from gettimeofday
system call

Intermission ?

Use light processes
for light tasks

• Thin proxies servers or threads for “network buffers”

• Goes between the user and your heavier backend application

• Built-in load-balancing! (for Varnish, perlbal, ...)

• httpd with mod_proxy / mod_backhand

• perlbal
– more on that in a bit

• Varnish, squid, pound, ...

!

Proxy illustration

perlbal or mod_proxy
low memory/resource usage

Users

backends
lots of memory

db connections etc

Light processes

• Save memory and database connections

• This works spectacularly well. Really!

• Can also serve static files

• Avoid starting your main application as root

• Load balancing

• In particular important if your
backend processes are “heavy”

Light processes

• Apache 2 makes it Really Easy

• ProxyPreserveHost On

<VirtualHost *>

 ServerName combust.c2.askask.com

 ServerAlias *.c2.askask.com

 RewriteEngine on

 RewriteRule (.*) http://localhost:8230$1 [P]
</VirtualHost>

• Easy to have different “backend
environments” on one IP

• Backend setup (Apache 1.x)
Listen 127.0.0.1:8230

Port 80

perlbal configuration

CREATE POOL my_apaches
 POOL my_apaches ADD 10.0.0.10:8080
 POOL my_apaches ADD 10.0.0.11:8080
 POOL my_apaches ADD 10.0.0.12
 POOL my_apaches ADD 10.0.0.13:8081

CREATE SERVICE balancer
 SET listen = 0.0.0.0:80
 SET role = reverse_proxy
 SET pool = my_apaches
 SET persist_client = on
 SET persist_backend = on
 SET verify_backend = on
ENABLE balancer

A few thoughts on
development ...

All Unicode All The Time

• The web is international and multilingual, deal
with it.

• All Unicode all the time!
(except when you don’t need it – urls, email addresses, ...)

• Perl: DBD::mysql was fixed last year! PHP 6 will have
improved Unicode support. Ruby 2 will someday, too...

• It will never be easier to convert than now!

Use UTC
Coordinated Universal Time

• It might not seem important now, but some day ...

• It will never be easier to convert than now!

• Store all dates and times as UTC, convert to “local
time” on display

Build on APIs

• All APIs All The Time!

• Use “clean APIs” Internally in your application
architecture

• Loosely coupled APIs are easier to scale

• Add versioning to APIs (“&api_version=123”)

• Easier to scale development

• Easier to scale deployment

• Easier to open up to partners and users!

Why APIs?

• Natural place for “business logic”

• Controller = “Speak HTTP”

• Model = “Speak SQL”

• View = “Format HTML / ...”

• API = “Do Stuff”

• Aggregate just the right amount of data

• Awesome place for optimizations that matter!

• The data layer knows too little

More development
philosophy

• Do the Simplest Thing That Can Possibly Work

• ... but do it really well!

• Balance the complexity, err on the side of simple

• This is hard!

Pay your technical debt

• Don’t incur technical debt

• “We can’t change that - last we tried the site went
down”

• “Just add a comment with ‘TODO’”

• “Oops. Where are the backups? What do you
mean ‘no’?”

• “Who has the email with that bug?”

• Interest on technical debt will kill you

• Pay it back as soon as you can!

Coding guidelines

• Keep your formatting consistent!

• perl: perltidy, perl best practices, Perl::Critic

• Keep your APIs and module conventions consistent

• Refactor APIs mercilessly (in particular while they are not public)

qmail lessons

• Lessons from 10 years of qmail

• Research paper from Dan Bernstein
http://cr.yp.to/qmail/qmailsec-20071101.pdf

• Eliminate bugs

• Test coverage

• Keep data flow explicit

• (continued)

http://cr.yp.to/qmail/qmailsec-20071101.pdf
http://cr.yp.to/qmail/qmailsec-20071101.pdf

qmail lessons (2)

• Eliminate code – less code = less bugs!

• Refactor common code

• Reuse code (Unix tools / libs, CPAN, PEAR,
Ruby Gems, ...)

• Reuse access control

• Eliminate trusted code – what needs access?

• Treat transformation code as completely
untrusted

Joint Strike Fighter

• ~Superset of the “Motor Industry Software Reliability
Association Guidelines For The Use Of The C
Language In Vehicle Based Software”

• Really Very Detailed!

• No recursion! (Ok, ignore this one :-))

• Do make guide lines – know when to break them

• Have code reviews - make sure every commit email
gets read (and have automatic commit emails in the first place!)

High Availability

and Load Balancing
and Disaster Recovery

High Availability

• Automatically handle failures! (bad disks, failing fans, “oops,

unplugged the wrong box”, ...)

• For your app servers the load balancing system
should take out “bad servers” (most do)

• perlbal or Varnish can do this for http servers

• Easy-ish for things that can just “run on lots of boxes”

Make that service always work!

• Sometimes you need a service to always run, but on
specific IP addresses

• Load balancers (level 3 or level 7: perlbal/varnish/squid)

• Routers

• DNS servers

• NFS servers

• Anything that has failover or an alternate server –
the IP needs to move (much faster than changing
DNS)

Load balancing

• Key to horizontal scaling (duh)

• 1) All requests goes to the load balancer
2) Load balancer picks a “real server”

• Hardware (lots of vendors)
Coyote Point have relatively cheaper ones

• Look for older models for cheap on eBay!

• Linux Virtual Server

• Open/FreeBSD firewall rules (pf firewall pools)
(no automatic failover, have to do that on the “real servers”)

Load balancing 2

• Use a “level 3” (tcp connections only) tool to send
traffic to your proxies

• Through the proxies do “level 7” (http) load balancing

• perlbal has some really good features for this!

perlbal

• Event based for HTTP load balancing, web serving, and a
mix of the two (see below).

• Practical fancy features like “multiplexing” keep-alive
connections to both users and back-ends

• Everything can be configured or reconfigured on the fly

• If you configure your backends to only allow as many
connections as they can handle (you should anyway!)
perlbal with automatically balance the load “perfectly”

• Can actually give Perlbal a list of URLs to try. Perlbal will
find one that's alive. Instant failover!

• http://www.danga.com/perlbal/

http://www.danga.com/perlbal/
http://www.danga.com/perlbal/

Varnish

• Modern high performance http accelerator

• Optimized as a “reverse cache”

• Whenever you would have used squid, give this a look

• Recently got “Vary” support

• Super efficient (except it really wants to “take over” a box)

• Written by Poul-Henning Kamp, famed FreeBSD
contributor

• BSD licensed, work is being paid by a norwegian newspaper

• http://www.varnish-cache.org/

http://varnish.projects.linpro.no
http://varnish.projects.linpro.no

Fail-over tools
“move that IP”

Buy a “hardware load balancer”

• Generally Quite Expensive

• (Except on eBay - used network equipment is often great)

• Not appropriate (cost-wise) until you have MANY
servers

• If the feature list fits it “Just Works”

• ... but when we are starting out, what do we use?

wackamole

• Simple, just moves the IP(s)

• Can embed Perl so you can run Perl functions
when IPs come and go

• Easy configuration format

• Setup “groups of IPs”

• Supports Linux, FreeBSD and Solaris

• Spread toolkit for communication

• Easy to troubleshoot (after you get Spread
working...)

• http://www.backhand.org/wackamole/

http://www.backhand.org/wackamole/
http://www.backhand.org/wackamole/

Heartbeat

• Monitors and moves services (an IP address is “just a
service”)

• v1 has simple but goofy configuration format

• v2 supports all sorts of groupings, larger clusters (up to 16
servers)

• Uses /etc/init.d type scripts for running services

• Maybe more complicated than you want your HA tools

• http://www.linux-ha.org/

http://www.linux-ha.org
http://www.linux-ha.org

Carp + pfsync

• Patent-free version of Ciscos “VRRP” (Virtual Router
Redundancy Protocol)

• FreeBSD and OpenBSD only

• Carp (moves IPs) and pfsync (synchronizes firewall state)

• (awesome for routers and NAT boxes)

• Doesn’t do any service checks, just moves IPs around

mysql master master
replication manager

• mysql-master-master tool can do automatic failover!

• No shared disk

• Define potential “readers” and “writers”

• List of “application access” IPs

• Reconfigures replication

• Moves IPs

• http://code.google.com/p/mysql-master-master/
http://groups.google.com/group/mmm-devel/

http://code.google.com/p/mysql-master-master/
http://code.google.com/p/mysql-master-master/

Suggested Configuration

• Open/FreeBSD routers with Carp+pfsync for firewalls

• A set of boxes with perlbal + wackamole on static “always up”
HTTP enabled IPs

• Trick on Linux: Allow the perlbal processes to bind to all
IPs (no port number tricks or service reconfiguration or restarts!)
echo 1 > /proc/sys/net/ipv4/ip_nonlocal_bind

or
sysctl -w net.ipv4.ip_nonlocal_bind=1

or
echo net.ipv4.ip_nonlocal_bind = 1 >> /etc/sysctl.conf

• Dumb regular http servers “behind” the perlbal ones

• wackamole for other services like DNS

• mmm for mysql fail-over

Redundancy fallacy!

• Don’t confuse load-balancing with redundancy

• What happens when one of these two fail?

Load (55%) Load (60%)

Load balanced servers

lo
ad

 /
 c

ap
ac

it
y

Oops – no redundancy!

• Always have “n+1” capacity

• Consider have a “passive spare”
(active/passive with two servers)

• Careful load monitoring!

• Munin http://munin.projects.linpro.no/

• MySQL Network

• (ganglia, cacti, ...)

Load Load (60%)

Load (50%)

More than 100% load on 1 server!

High availability
Shared storage

• NFS servers (for diskless servers, ...)

• Failover for database servers

• Traditionally either via fiber or SCSI connected to
both servers

• Or NetApp filer boxes

• All expensive and smells like “the one big server”

Cheap high availability
storage with DRBD

• Synchronizes a block device between two servers!

• “Network RAID1”

• Typically used in Active/Primary-Standby/Secondary setup

• If the active server goes down the secondary server will
switch to primary, run fsck, mount the device and start the
service (MySQL / NFS server / ...)

• v0.8 can do writes on both servers at once – “shared disk
semantics” (you need a filesystem on top that supports that, OCFS, GFS, ... –

probably not worth it, but neat)

Disaster Recovery

• Separate from “fail-over”
(no disaster if we failed-over...)

• “The rescue truck fell in the water”

• “All the ‘redundant’ network cables
melted”

• “The datacenter got flooded”

• “The grumpy sysadmin sabotaged
everything before he left”

Disaster Recovery Planning

• You won’t be back up in 2 hours, but plan so you
quickly will have an idea how long it will be

• Have a status update site / weblog

• Plans for getting hardware replacements

• Plans for getting running temporarily on rented
“dedicated servers” (ev1servers, rackspace, ...)

• And

Backup your databse!

• Binary logs!

• Keep track of “changes since the last
snapshot”

• Use replication to Another Site
(doesn’t help on “for $table = @tables { truncate $table }”)

• On small databases use mysqldump
(or whatever similar tool your database comes with)

• Zmanda MySQL Backup
packages the different tools and options

Backup Big Databases

• Use mylvmbackup to snapshot and archive

• Requires data on an LVM device (just do it)

• InnoDB:
Automatic recovery! (ooh, magic)

• MyISAM:
Read Lock your database for a few seconds before
making the snapshot
(on MySQL do a “FLUSH TABLES” first (which might be slow) and then a
“FLUSH TABLES WITH READ LOCK” right after)

• Sync the LVM snapshot elsewhere

• And then remove the snapshot!

• Bonus Optimization:
Run the backup from a replication slave!

Backup on replication slave

• Or just run the backup from a replication slave ...

• Keep an extra replica of your master

• shutdown mysqld and archive the data

• Small-ish databases:
mysqldump --single-transaction

System Management

All Automation All The Time

or

How to manage 200 servers in your spare-time

Keep software deployments easy

• Make upgrading the software a simple process

• Script database schema changes

• Keep configuration minimal

• Servername (“www.example.com”)

• Database names (“userdb = host=db1;db=users”;...”

• If there’s a reasonable default, put the default in the code (for

example)

• “deployment_mode = devel / test / prod” lets you put
reasonable defaults in code

http://www.example.com
http://www.example.com

Easy software deployment 2

• How do you distribute your code to all the app servers?

• Use your source code repository (Subversion etc)! (tell your

script to svn up to http://svn/branches/prod revision 123 and restart)

• .tar.gz to be unpacked on each server

• .rpm or .deb package

• NFS mount and symlinks

• No matter what: Make your test environment use the same
mechanism as production and:
Have it scripted!

http://svn/branches/prod
http://svn/branches/prod

have everything scripted!
actually,

http://flickr.com/photos/karlequin/84829873/

http://flickr.com/photos/karlequin/84829873/
http://flickr.com/photos/karlequin/84829873/

Configuration management
Rule Number One

• Configuration in SVN (or similar)

• “infrastructure/” repository

• SVN rather than rcs to automatically have a backup in the
Subversion server – which you are carefully backing up anyway

• Keep notes! Accessible when the wiki is down; easy to grep

• Don’t worry about perfect layout; just keep it updated

• Repeatable configuration!

• Can you reinstall any server Right Now?

• Use tools to keep system configuration in sync

• Upcoming configuration management (and more) tools!

• csync2 (librsync and sqlite based sync tool)

• puppet (central server, rule system, ruby!)

Configuration management
Rule Two

puppet

• Automating sysadmin tasks!

• 1) Client provides “facter” to server
2) Server makes configuration
3) Client implements configuration

• service { "sshd":
 enable => true,
 ensure => running
}

• package { "vim-enhanced": ensure => installed }
package { "emacs": ensure => installed }

node db-server inherits standard {
 include mysql_server
 include solfo_hw
}

node db2, db3, db4 inherits db-server { }

node trillian inherits db-server {
 include ypbot_devel_dependencies
}

class mysql_client {
 package { "MySQL-client-standard": ensure => installed }
 package { "MySQL-shared-compat": ensure => installed }
}

class mysql_server {
 file { "/mysql":
 ensure => directory,
 }
 package { "MySQL-server-standard": ensure => installed }

 include mysql_client
}

puppet example

puppet mount example

• Ensure an NFS mount
exists, except on the
NFS servers

class nfs_client_pkg {

 file { "/pkg":
 ensure => directory,
 }

 $mount = $hostname ? {
 "nfs-a" => absent,
 "nfs-b" => absent,
 default => mounted
 }

 mount {
 "/pkg":
 atboot => true,
 device => 'nfs.la.sol:/pkg',
 ensure => $mount,
 fstype => 'nfs4',
 options => 'ro,intr,noatime',
 require => File["/pkg"],
 }
}

More puppet features

• In addition to services, packages and
mounts...

• Manage users

• Manage crontabs

• Copy configuration files (with
templates)

• … and much more

• Recipes, reference documentation and
more at
http://reductivelabs.com/

http://reductivelabs.com
http://reductivelabs.com

Backups!
• Backup everything you can

• Check/test the backups routinely

• Super easy deployment: rsnapshot

• Uses rsync and hardlinks to efficiently store many backup
generations

• Server initiated – just needs ssh and rsync on client

• Simple restore – files

• Other tools

• Amanda (Zmanda)

• Bacula

Backup is cheap!

• Extra disk in a box somewhere? That can do!

• Disks are cheap – get more!

• Disk backup server in your office:
 Enclosure + PSU: $275
 CPU + Board + RAM: $400
 3ware raid (optional): $575
 6x1TB disks: $1700 (~4TB in raid 6)

= $3000 for 4TB backup space, easily expandable
 (or less than $5000 for 9TB space with raid 6 and hot standby)

• Ability to get back your data = Priceless!

RAID Levels

somewhat tangentially ...

RAID-I (1989) consisted of a Sun 4/280
workstation with 128 MB of DRAM, four dual-

string SCSI controllers, 28 5.25-inch SCSI disks and
specialized disk striping software.

http://www.cs.berkeley.edu/~pattrsn/Arch/prototypes2.html

http://www.cs.berkeley.edu/~pattrsn/Arch/prototypes2.html
http://www.cs.berkeley.edu/~pattrsn/Arch/prototypes2.html#Drapeau
http://www.cs.berkeley.edu/~pattrsn/Arch/prototypes2.html#Drapeau
http://www.cs.berkeley.edu/~pattrsn/Arch/prototypes2.html

Basic RAID levels
• RAID 0

Stripe all disks (capacity = N*S
Fail: Any disk

• RAID 1
Mirror all disks (capacity = S)
Fail: All disks

• RAID 10
Combine RAID 1 and 0 (capacity = N*S / 2)

• RAID 5
RAID 0 with parity (capacity = N*S - S)
Fail: 2 disks

• RAID 6
Two parity disks (capacity = N*S - S*2)
Fail: 3 disks!

RAID 1

• Mirror all disks to all disks

• Simple - easiest to recover!

• Use for system disks and small backup devices

RAID 0

• Use for redundant database mirrors or scratch data
that you can quickly rebuild

• Absolutely never for anything you care about

• Failure = system failure

• Great performance; no safety

• Capacity = 100%

• Disk IO = every IO available is “useful”

RAID 10

• Stripe of mirrored devices

• IO performance and capacity of half your disks - not bad!

• Relatively good redundancy, lose one disk from each of
the “sub-mirrors”

• Quick rebuild: Just rebuild one mirror

• More disks = more failures! If you have more than X
disks, keep a hot spare.

RAID 5

• Terrible database performance

• A partial block write = read all disks!

• When degraded a RAID 5 is a RAID 0 in redundancy!

• Rebuilding a RAID 5 is a great way to find more
latent errors

• Don’t use RAID 5 – just not worth it

RAID 6

• Like RAID 5 but doesn’t fail as easily

• Can survive two disks failing

• Don’t make your arrays too big

• 12 disks = 12x failure rate of one disk!

• Always keep a hot-spare if you can

Hardware or software RAID?

• Hardware RAID: Worth it for the Battery Backup
Unit!

• Battery allows the controller to – safely – fake
“Sure mister, it’s safely on disk” responses

• No Battery? Use Software RAID

• Low or no CPU use

• Easier and faster to recover from failures!

• Write-intent bitmap

• More flexible layout options

• RAID 1 partition for system + RAID 10 for data
on each disk

nagios

• Monitoring “is the website up” is easy

• Monitoring dozens or hundreds of sub-systems is
hard

• Monitor everything!

• Disk usage, system daemons, applications daemons,
databases, data states, ...

nagios configuration tricks

• nagios configuration is famously painful

• Somewhat undeserved!

examples of simple configuration
 - templates
 - groups

nagios best practices

• All alerts must be “important” – if some alerts are
ignored, all other alerts easily are, too.

• Don’t get 1000 alerts if a DB server is down

• Don’t get paged if 1 of 50 webservers crashed

• Why do you as a non-sysadmin care?

• Use nagios to help the sysadmins fix the
application

• Get information to improve reliability

Resource management

• If possible, only run one service per server (makes monitoring/

managing your capacity much easier)

• Balance how you use the hardware

• Use memory to save CPU or IO

• Balance your resource use (CPU vs RAM vs IO)

• Extra memory on the app server? Run memcached!

• Extra CPU + memory? Run an application server in a
Xen box!

• Don’t swap memory to disk. Ever.

Netboot your
application servers!

• Definitely netboot the installation (you’ll never buy another

server with a tedious CD/DVD drive)

• RHEL / Fedora: Kickstart + puppet = from box to all running in ~10 minutes

• Netboot application servers

• FreeBSD has awesome support for this

• Debian is supposed to

• Fedora Core 7 8 ?? looks like it will (RHEL5uX too?)

No shooting in foot!

• Ooops? Did that leak memory again? Development
server went kaboom?

• Edit /etc/security/limits.conf

• @users soft rss 250000
@users hard rss 250000
@users hard as 500000

• Use to set higher open files limits for mysqld etc, too!

noatime mounts

• Mount ~all your filesystems “noatime”

• By default the filesystem will do a write every time it
accesses/reads a file!

• That’s clearly insane

• Stop the madness, mount noatime

/dev/vg0/lvhome /home ext3 defaults 1 2
/dev/vg0/lvhome /home ext3 noatime 1 2

graph everything!

• mrtg
The Multi Router Traffic Grapher

• rrdtool
round-robin-database tool

• Fixed size database handling time series data

• Lots of tools built on rrdtool

• ganglia
cluster/grid monitoring system

http://oss.oetiker.ch/mrtg/
http://oss.oetiker.ch/mrtg/

Historical perspective
basic bandwidth graph

Launch
Steady growth

Try CDN

Enable compression
for all browsers

munin

• “Hugin and Munin are the ravens of the Norse god king
Odin. They flew all over Midgard for him, seeing and
remembering, and later telling him.”

• Munin is also AWESOME!

• Shows trends for system statistics

• Easy to extend

mysql query stats

• Is the MySQL query cache
useful for your application?

• Make a graph!

• In this particular installation it
answers half of the selects

Query cache
useful?

squid cache hitratio?

• Red:
Cache Miss

• Green:
Cache Hit

• Increased cache size to
get better hit ratio

• Huh? When?

Don’t confuse graphs with “hard data”

Keep the real numbers, too!

munin: capacity planning, cpu

• xen system
6 cpus

• plenty to
spare

Blocking on disk I/O?

• Pink:
iowait

• This box needs more
memory or faster disks!

More IO Wait fun
• 8 CPU box - harder to

see the details

• High IO Wait

More IO Wait fun • Upgraded memory,
iowait dropped!

IO Statistics • per disk IO statistics

• more memory, less disk IO

more memory stats

fix perlbal leak

fix app config

plenty memory free

room for memcached?

took a week to
use new memory

for caching

plenty memory
to run

memcached
here!

munin: spot a problem?

• 1 CPU 100% busy
on “system”?

• Started a few days
ago

munin: spot a problem?

• Has it happened
before?

• Yup - occasionally!

munin: spot a problem?

• IPMI driver went
kaboom!

./load config
graph_title Load average
graph_args --base 1000 -l 0
graph_vlabel load
...
load.label load
load.info Average load for the five minutes.
...

./load fetch
load.value 1.67

Make your own Munin plugin

• Any executable with the
right output

Munin as a nagios agent

• Use a Nagios plugin to talk to munin!

• Munin is already setup to monitor important metrics

• Nagios plugin talks to munin as if the collector agent

define service {
 use local-service
 hostgroup_name xen-servers,db-servers,app-servers
 service_description df
 check_command check_munin!df!88!94
}

A little on hardware
• Hardware is a commodity!

• Configuring it isn’t (yet – Google AppEngine!)

• Managed services - cthought.com, RackSpace, SoftLayer ...

• Managing hardware != Managing systems

• Rent A Server
(crummy support, easy on hardware replacements, easy on cashflow)

• Amazon EC2 (just announced persistent storage!)

• Use standard configurations and automatic
deployment

• Now you can buy or rent servers from anywhere!

Use a CDN

• If you serve more than a few TB static files a month...

• Consider a Content Delivery Network

• Fast for users, easier on your network

• Pass-through proxy cache - easy deployment

• Akamai, LimeLight, PantherExpress, CacheFly, ...
(only Akamai supports compressed files (??))

Client Performance
“Best Practices for Speeding Up Your Web Site”

• “High Performance Web Sites”
book by Steve Souders

• http://developer.yahoo.com
/performance/

Recommended Reading

http://developer.yahoo.com/performance/
http://developer.yahoo.com/performance/
http://developer.yahoo.com/performance/
http://developer.yahoo.com/performance/

Use YSlow
• Firefox extension made by Yahoo!

• http://developer.yahoo.com/yslow/

• Quickly checks your site for the Yahoo Performance
Guidelines

• I’ll quickly go over a few server / infrastructure related
rules ...

http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html

Minimize HTTP Requests
• Generate and download the main html in 0.3 seconds

• Making connections and downloading 38 small
dependencies (CSS, JS, PNG, …) – more than 0.3s!

• Combine small JS and CSS files into fewer larger files

• Make it part of your release process!

• In development use many small files, in production
group them

• CSS sprites to minimize image requests

Add an “Expires” header

• Avoid unnecessary “yup, that
hasn’t changed” requests

• Tell the browser to cache objects

• HTTP headers

• Expires: Mon, Jan 28 2019 23:45:00 GMT
Cache-Control: max-age=315360000

• Must change the URL when the file changes!

http://www.flickr.com/photos/leecullivan/

http://www.flickr.com/photos/leecullivan/203799896/
http://www.flickr.com/photos/leecullivan/203799896/

Ultimate Cache Control
• Have all your static resources be truly static

• Change the URL when the resource changes

• Version number – from Subversion, git, …

/js/foo.v1.js
/js/foo.v2.js
...

• Modified timestamp – good for development

/js/foo.v1206878853.js

• (partial) MD5 of file contents – safe for cache poisoning

/js/foo.v861ad7064c17.js

• Build a “file to version” mapping in your build process
and load in the application

Serve “versioned” files
• Crazy easy with Apache rewrite rules

• “/js/foo.js” is served normally

• “/js/foo.vX.js” is served with extra cache headers

RewriteEngine on
remove version number, set environment variable
RewriteRule ^/(.*\.)v[0-9a-f.]+\.(css|js|gif|png|jpg|ico)$ \
 /$1$2 [E=VERSIONED_FILE:1]

Set headers when “VERSIONED_FILE” environment is set
Header add "Expires" "Fri, Nov 10 2017 23:45:00 GMT" \
 env=VERSIONED_FILE
Header add "Cache-Control" "max-age=315360001" \
 env=VERSIONED_FILE

Minimize CSS, JS and PNG

• Minimize JS and CSS files (remove whitespace,
shorten JS, …)

• http://developer.yahoo.com/yui/compressor/

• Add to your “version map” if you have a “-min”
version of the file to be used in production

• Losslessly recompress PNG files with OptiPNG
http://optipng.sourceforge.net/

http://optipng.sourceforge.net
http://developer.yahoo.com/yui/compressor/
http://developer.yahoo.com/yui/compressor/
http://optipng.sourceforge.net

function EventsFunctions() {
 this.get_data = function(loc_id) {
 if (this.TIMEOUT) {
 window.clearTimeout(this.TIMEOUT);
 this.TIMEOUT = null;
 }
 var parameters = 'auth_token=' + escape(global_auth_token) + ';total=5;location='+loc_id;
 var request = YAHOO.util.Connect.asyncRequest('POST', '/api/events/location_events',
 {
 success:function(o) {
 var response = eval('(' + o.responseText + ')');
 if (response.system_error) {
 // alert(response.system_error);
 }
 else if (response.length) {
 var eventshtml='';
 for (var i=0; i<response.length; i++) {
 eventshtml+='
'+
 response[i].name+' - '+response[i].start_date;
 if (response[i].start_time) eventshtml+=' '+response[i].start_time;
 if (response[i].description) eventshtml+='
'+response[i].description;
 eventshtml+='

';
 }
 var le = document.createElement("DIV");
 le.id='location_events';
 le.innerHTML=eventshtml;
 document.body.appendChild(le);
 tab_lookups['events_tab'] = new YAHOO.widget.Tab({
 label: 'Events',
 contentEl: document.getElementById('location_events')
 });
 profileTabs.addTab(tab_lookups['events_tab']);
 }
 try{ pageTracker._trackPageview('/api/events/location_events') } catch(err) {}
 },
 failure:function(o) {
 // error contacting server
 }
 },
 parameters);
 };

}

Pre-minimized JS

http://upcoming.yahoo.com/event/'+response%5Bi%5D.id+'/
http://upcoming.yahoo.com/event/'+response%5Bi%5D.id+'/

function EventsFunctions(){this.get_data=function(loc_id){if(this.TIMEOUT)
{window.clearTimeout(this.TIMEOUT);
this.TIMEOUT=null;}var parameters="auth_token="+escape(global_auth_token)
+";total=5;location="+loc_id;
var request=YAHOO.util.Connect.asyncRequest("POST","/api/events/location_events",
{success:function(o){var response=eval("("+o.responseText+")");
if(response.system_error){}else{if(response.length){var eventshtml="";for(var
i=0;i<response.length;i++){eventshtml+='
<a href="http://example.com/
event/'+response[i].id+'/">'+response[i].name+" - "+response[i].start_date;
if(response[i].start_time){eventshtml+="
"+response[i].start_time;}if(response[i].description){eventshtml+="<br /
>"+response[i].description;
}eventshtml+="

";}var
le=document.createElement("DIV");le.id="location_events";le.innerHTML=eventshtml;
document.body.appendChild(le);tab_lookups.events_tab=new
YAHOO.widget.Tab({label:"Events",contentEl:document.getElementById("location_events")});
profileTabs.addTab(tab_lookups.events_tab);}}try{pageTracker._trackPageview("/api/events/
location_events");

 Minimized JS
~1600 to ~1100 bytes

~30% saved!

http://upcoming.yahoo.com/event/'+response%5Bi%5D.id+'/
http://upcoming.yahoo.com/event/'+response%5Bi%5D.id+'/
http://upcoming.yahoo.com/event/'+response%5Bi%5D.id+'/
http://upcoming.yahoo.com/event/'+response%5Bi%5D.id+'/

Gzip components

• Don’t make the users download several times more
data than necessary.

• Browser:
Accept-Encoding: gzip, deflate

• Server:
Content-Encoding: gzip

• Dynamic content (Apache 2.x)
LoadModule mod_deflate …

AddOutputFilterByType DEFLATE text/html
 text/plain text/javascript text/xml

Gzip static objects

• Pre-compress .js and .css files in the build process
foo.js > foo.js.gzip

• AddEncoding gzip .gzip

If the user accepts gzip data
RewriteCond %{HTTP:Accept-Encoding} gzip

… and we have a .gzip version of the file
RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME}.gzip -f

then serve that instead of the original file
RewriteRule ^(.*)$ $1.gzip [L]

HTTP:Accept-Encoding
HTTP:Accept-Encoding

remember

Think Horizontal!

(and go build something neat!)

Books!

• “Building Scalable Web Sites” by
Cal Henderson of Flickr fame

• Only $26 on Amazon! (But it’s worth the $40

from your local bookstore too)

• “Scalable Internet Architectures”
by Theo Schlossnagle
Teaching concepts with lots of examples

• “High Performance Web Sites” by Steve
Souders
Front end performance

Thanks!
• Direct and indirect help from ...

• Cal Henderson, Flickr Yahoo!

• Brad Fitzpatrick, LiveJournal SixApart Google

• Graham Barr

• Tim Bunce

• Perrin Harkins

• David Wheeler

• Tom Metro

• Kevin Scaldeferri, Overture Yahoo!

• Vani Raja Hansen

• Jay Pipes

• Joshua Schachter

• Ticketmaster

• Shopzilla

• .. and many more

Questions?

Thank you!

More questions? Comments? Need consulting?

ask@develooper.com

http://develooper.com/talks/

http://groups.google.com/group/scalable

– The End –

http://groups.google.com/group/scalable
mailto:ask@develooper.com
mailto:ask@develooper.com
http://develooper.com/talks/
http://develooper.com/talks/
http://groups.google.com/group/scalable

